
Energy Storage
Security (ESSec)
Using Microservices
Sandia National
Laboratories
Adrian R. Chavez
Cybersecurity for Energy
Delivery Systems (CEDS)
Peer Review
October 6-7, 2020

2

Objective
• To design a secure and interoperable

containerized suite of applications capable of
testing, deploying, and operating an energy
storage system. The team will include the ability
to upgrade software in real-time, to quickly
launch new applications, to detect compromised
or crashed applications using fault tolerant
algorithms, and to manage software applications,
such as Open Field Message Bus protocols
adapters, within a variety of energy storage
systems.

Schedule
• Project start / end dates:

(9/28/2020 - 9/29/2023)

• Research & Develop reference implementation
(9/28/2020 - 3/31/2022)

• Partner sites (9/28/2020– 8/31/2023).

• Independent 3rd party red team assessment (3/31/2022-
9/30/2022)

• Apply orchestration and container technologies towards
utility

Project Overview

Total Value
of Award: $3.75M

Funds
Expended
to Date:

0%

Performer: Sandia National
Laboratories

Partners:

Schweitzer
Engineering
Laboratories, Open
Energy Solutions,
Grimm, Duke Energy,
DTE Energy, Entergy

3

Advancing the State of the Art (SOA)
• Energy Delivery Systems depend on software and management is

manual:
• Communicate/control resources
• Optimize resources available
• Maintenance and patching
• Situational awareness – intelligent monitoring
• BlackEnergy, Shamoon, and Stuxnet are examples of malware that target software

applications to propagate through a control system network

• Currently, interruptions in service are necessary to update/upgrade
software

• Application containers are used widely in IT environments but not in
OT environments

• Virtual machines are heavyweight and not feasible for OT environments
• Legacy systems are widely deployed in OT environments

• Software deployments are not portable

4

Advancing the State of the Art (SOA)
• Management of Energy Delivery Systems is a manual process

• Configuration of software with existing infrastructure
• Each deployment is unique

• Software containers reduce the attack surface by isolating processes
within their own operating environments

• Orchestration allows for testing and repeatable deployments
• Software containers are portable across operating systems
• Processes compromised with malware can be identified and replaced

without disruption of operation
• Interoperable solution that can be federated across multiple utilities

• Commercial product will be included within SEL product line

• Testing, evaluation, and documentation of our approach

5

Progress to Date
Major Accomplishments

• 2020 - Kickoff meeting complete Monday, September 28, 2020

• 2020 – Developed live-upgrades and live-migration technology proof-of-concept
(CAPSec)

• 2020 - DOE Practices to Accelerate the Commercialization of Technologies (PACT)
(CAPSec)

• 2018 - US Patent No. 10,037,203 (CAPSec)

6

Challenges to Success
Containerization of energy storage system

• Identify software container candidates applicable for utility partner sites

• Identify ESS software applicable to each of the partner sites

• Build and deploy microservices within laboratory environment

• Measure performance of containerized energy storage system

Orchestration of containerization solution
• Identify software orchestration candidates to manage containers

• Develop microservices that can be upgraded and migrated without downtime

• Test and deploy within utility partner sites

Deployment within utility partner sites
• Each utility will have unique environments

• Orchestration and containerization will need to be portable and federated across
partner sites

• Open Field Message Bus protocol and SEL commercial product will provide
interoperability

7

Collaboration/Sector Adoption
Plans to transfer technology/knowledge to end user

• Partnering with 3rd party red team throughout lifecycle of project

• Provide cybersecurity guidance from design to deployment

• Partnering with vendor to commercialize solution

• Reference implementation will be Interoperable commercial product

• Partnering with 3 utilities to test and evaluate our solutions
• Ensure we are meeting functional and operational requirements

• Develop use cases that are broadly applicable across each utility

• Federate solution between each of the utility partners

• Demonstration to be performed during 2nd half of the project after the reference
implementation and the red team assessment are complete

8

Next Steps for this Project
Approach for the next year or to the end of project

• Orchestration/Containerization of Energy Storage System (9/28/2020-3/31/2022)
• Interoperable reference implementation to be developed

• Capture and document performance metrics (1/31/2022-7/3/2023)
• Ensure operational requirements of utility partners are met

• Independent 3rd party red team security assessment (3/31/2022-9/30/2022)
• Document findings and mitigations to be integrated into reference implementation

• Apply towards utility environments (9/30/2022-8/31/2023)
• Integrate reference implementation and commercial product to demonstrate interoperability

• Document and communicate results to partners and DOE (9/28/2020-9/29/2023)

9

Container Application Security (CAPSec)

Upgraded
Software

Docker
Engine

Vulnerable
Software

Docker
Engine

Orchestration

State State

Stateful

Stateless

CAPSEC
• Containerized

architecture
• Replicates Stateful

environments
• TLS Agents on parallel

containers

Virtual Machine

App
4

App
3

Docker Engine
(Container)

Guest Operating
System

Host Hardware

App
2

App
1

Host Operating System

10

Demonstration 1: NodeRed Software BEFORE Upgrade

• NodeRed = 0.20.6
• Node.js = 8.16.0

11

Demonstration 1: NodeRed Running Multiple Instances to
Upgrade Software without Downtime

• 3 Replicas of NodeRed running

12

Demonstration 1: Upgrade NodeRed Software One
Instance at a Time

• Rolling update performed

13

Demonstration 1: Upgrade NodeRed Software One
Instance at a Time

• NodeRed = 0.20.8
• Node.js = 8.16.1

14

Demonstration 2: Upgrading Stateful Programs Setup
• Two servers that will participate in upgrade

• 1st server is the baseline and has an old unpatched version of the software
running (kserver)

• 2nd server has the updated software running that fixes the vulnerability
(kserver2)

• The software is using the libmodbus library to service Modbus queries
• An exploit works against the baseline version on the 1st server and causes it to

crash due to corrupting memory

15

Demonstration 2: Migration Process
• Migrate agent running on server1 to pull out the state

information from this server
• Migrate controller running on server2 that will wait for updates

from the agent and will then update state information for server2
• Server1 has initial state value <01>

16

Demonstration 2: Migration Process (cont.)
• Server1 has initial state value <00>

17

Demonstration 2: Migration Software
• Top windows show the migration agent running

on server1
• Bottom windows shows the migration controller –

it has successful updated the state information of
server2

18

Demonstration 2: Checking the State of server2 Again
• After running the migration, checking the state of

server2 shows the coil has been updated from
<00> to <01>

19

Demonstration 2: Running the Modus Exploit against
server1

• Server1 crashes after exploit is launched (core
dumped)

20

Demonstration 2: Running the Modus Exploit against
server2

• Server2 continues to run after exploit is launched (NO core
dumped)

	Energy Storage Security (ESSec) Using Microservices�Sandia National Laboratories
	Project Overview
	Advancing the State of the Art (SOA)
	Advancing the State of the Art (SOA)
	Progress to Date
	Challenges to Success
	Collaboration/Sector Adoption
	Next Steps for this Project
	Container Application Security (CAPSec)
	�Demonstration 1: NodeRed Software BEFORE Upgrade
	�Demonstration 1: NodeRed Running Multiple Instances to Upgrade Software without Downtime
	�Demonstration 1: Upgrade NodeRed Software One Instance at a Time
	�Demonstration 1: Upgrade NodeRed Software One Instance at a Time
	�Demonstration 2: Upgrading Stateful Programs Setup
	�Demonstration 2: Migration Process
	�Demonstration 2: Migration Process (cont.)
	�Demonstration 2: Migration Software
	�Demonstration 2: Checking the State of server2 Again
	�Demonstration 2: Running the Modus Exploit against server1
	�Demonstration 2: Running the Modus Exploit against server2

